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Abst rac t  

Searches for gmvitationar  radiation  can be performed  in  space  with  two  spacecraft  tracking each othe cr s 

with  coherent  laser  light. Four observable  can  be  measured:  two  one-way  Doppler  (each  spacecraft  transmits 
a light  beam and  the  other  reads  out  the  Doppler  with  an  onboard  laser),  and two two-way Doppler  (light 

is  coherently  transponded by the  other spacecraft and  Doppler is extracted  by  comparing  the  phases of 
transmitted  and  transponded  lights). One-way and two-way tracking data recorded  on  board  the two space- 
craft  are  time  tagged  and  telemetered back to  Earth for data analysis. By linearly  combining  the  four data 

sets, we derive a method for  reducing by several  orders of magnitude, at selected  Fourier  components, the 
frequency fluctuations  due to the lasers. The  gravitational wave signal remaining at these  frequencies  makes 

this  spacecraft to spacecraft  coherent laser tracking  technique  the  equivalent of a x$qhne  interferometer 
detector of gravitational  radiation.  Estimates for the  strain sensitivities  achievable with these  experiments 
are  presented for gravitational wave bursts,  monochromatic signals, and a stochastic  background of grav- 

itational  radiation.  This  experimental  technique  could be implemented  with  two  spacecraft  carrying  an 

appropriate  optical  payload, or with  the  proposed  broad-band,  space-based laser interferometer detectors of 

gravitational waves operated in  this  non-interferometric  mode. 

PACS numbers: 04.80.N, 95.55.Y, and 07.60.L 



I Introduction 

The detection of gravitational  radiation is one of the  most challenging efforts in  the physics in  this century.  A 

successful observation will not only represent  a great  triumph  in  experimental physics, but will also  provide 

a new observational  tool for obtaining  a  better  and deeper  understanding  about  its sources, as well as a 

unique  test of the proposed relativistic  theories of gravity [l]. 

Over the  past  forty years several designs of Earth-based as well as space-based  detectors have been 

considered in  the  form of feasibility  studies,  prototypes,  or fully operational  instruments.  Earth-based 

detectors,  such as resonant bars  and laser interferometers,  are  most sensitive to  gravitational waves in  the 

frequency interval 10 Hz to  about 10 kHz. The low frequency  limit is imposed by the seismic and gravity- 

gradient noise, while the high frequency cut-off is determined by instrumental noise sources [l]. Space-based 

detectors  instead, such as the coherent microwave tracking of interplanetary  spacecraft [2] and proposed 

laser  interferometers  in  planetary  orbits [3], are  most sensitive to a complementary  frequency  band,  from 

about Hz to 1 Hz. 

In  present single-spacecraft Doppler tracking  experiments  in  particular,  many of the noise sources can  be 

either  reduced or calibrated by implementing  appropriate microwave frequency  links and  by using specialized 

electronics. The  fundamental  instrumental  limitation  is  imposed by the frequency  (time-keeping)  fluctuations 

inherent to  the reference clocks that control the microwave system [4,5, 61. Hydrogen  maser clocks, currently 

used in Doppler  tracking  experiments, achieve their  best  performance at  about 1000 seconds  integration  time, 

with  a  fractional  frequency  stability of a few parts  in [4]. This  is  the reason why these  interferometers 

in  space are  most sensitive  to  millihertz gravitational waves. This  integration  time  is also  comparable  to 

the  propagation  time  to spacecraft  in the  outer  solar  system.  The frequency  fluctuations  induced by the 

intervening  media have severely limited  the sensitivities of these  experiments.  Among  all  the  propagation 

noise sources, the troposphere  is the largest and  the  hardest  to  calibrate  to a reasonably low level. Its raw 

frequency fluctuations have been estimated  to  be as large as a few parts  in  at 1000 seconds integration 

time [4]. 

In  order  to remove systematically  the  effects of the troposphere  in the Doppler data,  it was shown by 

Vessot and Levine [7] and  Smarr et al. [a] that by adding to  the spacecraft  payload a highly stable frequency 

standard, a Doppler read-out system,  and by utilizing  a  transponder at  the ground  antenna, one could make 
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Doppler one-way (Earth-to-spacecraft,  spacecraft-to-Earth) as well as two-way (spacecraft-Earth-spacecraft, 

Earth-spacecraft-Earth)  measurements.  This  configuration  makes  the  Doppler  link  totally  symmetric  and 

allows, by properly  combining the Doppler data recorded on  the  ground  with  the  data measured on  the 

spacecraft,  the  complete removal of the frequency fluctuations  due  to  the Earth troposphere,  ionosphere, 

and mechanical  vibrations of the ground antenna  from  the new formed data. 

In  our previous  paper [9] (which  from now on we will refer to as Paper 1) we have  shown that  the results 

obtained by  Vessot and Levine could be further improved. In  Paper 1 we derived a unicrue linear  combination 

of the four  Doppler data  that is unaffected by the  troposphere, ionosphere, and mechanical  vibrations of the 

ground  antenna,  and allows the experimenters to  further reduce by several  orders of magnitude, at selected 

Fourier components,  the frequency  fluctuations  generated by the  onboard clock. This  linear combination 

is  optimal in that  it minimizes the  magnitude of the frequency fluctuations of the remaining noise sources. 

The corresponding  root-mean-squared (r.m.s.) noise level was estimated  to  be  equal  to 4.7 x at 

Hz in  the  assumption of calibrating  the frequency fluctuations  induced by the  interplanetary  plasma,  and 

integrating for a period of forty  days. 

In  this  paper we extend  the theoretical  framework  derived in  Paper 1 to  the configuration of two space- 

craft  tracking each others  with coherent  laser  light. The  main result of this  paper  is  that  the frequency 

fluctuations  due to  the lasers, which are  the  main noise sources in  these  tracking  experiments,  can be re- 

duced by several orders of magnitude  at selected Fourier components.  This  makes  spacecraft  to spacecraft 

coherent  laser  tracking the equivalent of a xylophone interferometerdetector of gravitational waves. Interfer- 

ometric  measurements of gravitational  radiation  with only two free-falling particles  are possible because the 

transfer  functions of a gravitational wave pulse and  the frequency fluctuations of the lasers to  the tracking 

observables, are  different when the wavelength of the  gravitational wave is  shorter  than  the  distance between 

the spacecraft [5, 9, lo]. 

In recent years  there  has been increased interest  from NASA to explore the  solar  system with  multi- 

spacecraft  missions.  If  adequate  optical  payloads could be  added  to these  missions,  searches for gravitational 

waves through  spacecraft  to  spacecraft laser tracking could be  performed. 

The  data analysis  technique presented in  this  paper could also be  implemented  with  the  future LISA 

mission [3] as a backup  option in case of failure of one of the  three  spacecraft.  This space-based, one- 

bounce Michelson interferometer  detector of gravitational waves, has  been  considered by the European 
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Space Agency (ESA)  and tlle National  Aeronautics and Space  Administration  (NASA) to  be launched 

during  the first  decade of next  century. With  its  three spacecraft flying in a triangular  formation  and 

simultaneously  tracking each others  with  coherent laser light, LISA can  simultaneously  generate data from 

three Michelson interferometers.  In the  eventuality of losing one spacecraft,  two of the  three coherent 

links between the spacecraft are  lost,  making impossible the calibration  via Michelson interferometry of the 

frequency fluctuations  due  to  the  master  laser. The implementation of the  method described in  this  paper, 

however, would still allow the  experimenters  to  make  narrow-band  measurements of gravitational waves with 

the  remaining two spacecraft.  In what follows we present an  outline of this  paper. 

In Section I1 we give a summary of the  main  results derived  in Paper 1, which provides the theoretical 

framework for this  paper. After  deriving the  transfer  functions of the noise sources  affecting the one-way and 

two-way tracking data  sets, we show that there  exist two possible linear  combinations of the two one-way 

Doppler data  that allow the  reduction of the noise from the lasers a t  selected  Fourier  frequencies.  These are 

what we will refer to as the frequencies of the xylophone. 

Since the xylophone frequencies are  equal  to  multiple integers of the inverse of the round  trip light 

time, any  variation in the  distance between the spacecraft  implies  changes in these frequencies. However, 

for selected trajectories of the two spacecraft, we can successfully implement the xylophone  technique by 

integrating  the data for time intervals  during which the variations of the xylophone  frequencies are smaller 

than  the frequency  resolution  bin.  Examples of trajectories fulfilling this  requirement  are presented  in  Section 

111. 

The  strain sensitivities achievable with  this  technique, when implemented  with two  spacecraft  having the 

same  instrumentation as the one utilized by  LISA [3], are presented in Section  IV. We find that a strain 

sensitivity of 1.9 x at  the frequency 3 x Hz can  be achieved when searching  for sinusoids and 

by integrating  the data for  three weeks. At this  sensitivity level, gravitational  radiation  from  galactic  binary 

systems  should  be  observable. 

Sensitivities to  gravitational wave bursts  and a  stochastic  background of gravitational  radiation  are also 

presented in this  Section, while in Section V we provide our comments and conclusions. 
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I1 Spacecraft  to  Spacecraft  Coherent  Laser Tkacking as a Xylo- 
phone  Interferometer 

Let us consider two  spacecraft  in  their  interplanetary  trajectories, each acting as a free  falling  test  particle, 

and continuously  tracking each others via coherent  laser  light.  One  spacecraft, which we will refer to as 

spacecraft a ,  transmits a laser beam of nominal  frequency vo to  the  other  spacecraft (spacecraft b ) .  The 

phase of the light received at spacecraft b is used by a  laser  onboard  spacecraft b for  coherent  transmission 

back to spacecraft a.  The relative two-way frequency (or phase) changes AV/VO, as functions of time,  are 

then measured at a photo  detector [3]. When a gravitational wave crossing the solar  system  propagates 

through  this  electromagnetic  link,  it  causes  small  perturbations  in AV/VO, which are  replicated three  times 

in  the Doppler data  with  maximum spacing given by the two-way light  propagation  time between the two 

spacecraft [5]. 

Let us introduce  a  set of Cartesian  orthogonal  coordinates ( X ,  Y ,  2) centered on  one of the two  spacecraft, 

say  spacecraft a. The Z axis is assumed to be  oriented  along the direction of propagation of a gravitational 

wave pulse,  and ( X ,  Y )  are two orthogonal  axes  in  the  plane of the wave (see Figure 1). In  this  coordinate 

system we can  write  the two-way Doppler response,  measured by spacecraft a at time t ,  as follows [5] 

( l +  h(t - 2L) 

where h(t)  is  equal to 

Here h+(t ) ,  h x ( t )  are  the wave’s two amplitudes  with  respect  to  the ( X , Y )  axis, (e, $) are  the  polar angles 

describing the  location of spacecraft b with respect to  the ( X ,  Y, 2) coordinates, ,u is equal  to cos 6, and L is 

the  distance between the two spacecraft (units in which the speed of light c = 1). 

We have denoted  with Ca( t )  the  random process associated  with the frequency  fluctuations of the laser 
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onboard  spacecraft a ;  B,(t), & ( t )  are  the  joint effects of the noises from  buffeting by non  gravitational 

forces on the  test masses [3] onboard  spacecraft a and b respectively, T&,(t) is the noise due  to  the optical 

transponder  on  board spacecraft b ,  and N z a ( t )  is the noise from  the  photo  detector  on  board spacecraft a 

where two-way phase changes are measured [3]. 

From Eq. (1) we deduce that gravitational wave pulses of duration longer than  the round trip light  time 

2L have  a  frequency response y z a ( t )  that,  to first  order,  tends  to zero. The tracking  system essentially acts as 

a passband device, in which the low-frequency limit f! is  roughly  equal to (2L)-' Hz, and  the high-frequency 

limit f H  is  set by the  shot noise at  the  photo detector. 

In  Eq. (1) it is also important  to  note  the  characteristic  time  signatures of the  random processes Ca(t), 

B,(t), and &(t) .  The  time  signature of the noise Ca(t) can be understood by observing that  the frequency 

of the signal received at  time t contains  laser frequency fluctuations  transmitted 2L seconds earlier.  By 

subtracting  from  the frequency of the received signal the frequency of the signal  transmitted  at  time t ,  we 

also subtract  the frequency  fluctuations Ca(t) with the  net result  shown in  Eq. (1) [4, 5, 91. As far as 

the  fluctuations  due  to  buffeting of the  test-mass  onboard spacecraft a are concerned, the frequency of the 

received signal  is affected at  the  moment of reception as well as 2L seconds  earlier.  Since  the frequency 

of the signal  generated at  time t does not  contain yet any of these  fluctuations, we conclude that B,(t) is 

positive-correlated at  the round trip light time 2L [4, 5, 91. The time  signature of the noise &(t)  in Eq. (1) 

can  be  understood  through  similar considerations. 

Besides two-way measurements, one-way coherent  laser  tracking  can  also be  symmetrically recorded by 

both spacecraft [7, 9, 111 (see Figure 2).  If  we assume the  time keeping systems  on  board  the two  spacecraft 

to  be synchronized,  denote  with TO the frequency of the signal  transmitted by spacecraft b ,  with y l , ( t )  the 

one-way data measured at  time t on board  spacecraft a ,  with Y l b ( t )  and Y z b ( t )  respectively the one-way and 

two-way measurements  performed on board  spacecraft b at  the same  time t ,  then a gravitational wave pulse 

appears in the  data y l a ( t ) ,   Y l b ( t ) ,  and Y Z b ( t ) ,  with the following signatures [g, 121 
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In Eqs. (3 ,  4, 5) we have  denoted by Cb(i!) the  random process associated  with the frequency  fluctuations of 

the laser  onboard  spacecraft b;  TR,(t) is the noise due  to  the  optical  transponder  on  board spacecraft a, and 

N l , ( t ) ,  N l b ( t ) ,   N 2 b ( t )  are  the  shot noises in  the one-way and two-way data.  The  data  yla(t) , Y Z a ( t ) ,   Y l b ( t ) ,  

Y 2 b ( t )  are  then  recorded,  time  tagged,  and telemetered back to  Earth for analysis a t  a later  time  during  the 

mission. 

Among  all the noise sources included in  Eqs.  (1, 3, 4, 5) the frequency  fluctuations  due to  the lasers 

are expected to  be  the  largest. A space-qualified single-mode  laser,  such as a  diode-pumped Nd:YAG ring 

laser of frequency vo = 3.0 x 1014 Hz and phase-locked to a Fabry-Perot  optical  cavity,  is  expected to have a 

spectral level of frequency  fluctuations  equal  to  about 1.0 x 1 0 - 1 3 / m  [3] in  the  millihertz  band. Frequency 

stability  measurements  performed  on such a laser by McNamara et  al. [13] indicate that a stability of about 

1.0 x l O - l 4 / G  might  be achievable in  the  same frequency band. 

For the  moment we will not  make any assumptions  on the frequency stability of the  onboard lasers, and 

return  to  this  point  later. We will focus instead  on  their  transfer  functions  and  on  the  transfer  function of 

the  gravitational wave signal as shown in Eqs. (1, 3 , 4  5). If  we denote  with  yTa(f)  the Fourier  transform of 

the  time series y l a ( t ) ,  this is equal to 

Similarly we willdenote with y y a ( f ) ,  y;(f),  y%(f) the Fourier  transforms  ofyZa(t), Y l b ( t ) ,  Y 2 b ( t )  respectively. 
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By taking  the  Fourier  transform of Eq. 1 for  instance, we derive the following  expression 

Note that  the  transfer  function of the noise C a  is equal to zero at  frequencies that  are  multiple integers of the 

inverse of the  round-trip-light  time, while the  transfer  function of the  gravitational wave signal is in general 

different  from  zero. By making  coherent  laser  tracking  measurements at  these  frequencies, we are in fact 

making xylophone  interferometric  measurements of gravitational waves. 

We have used the two-way response  measured  on  spacecraft a as an example  for  pointing  out that a 

narrow-band  interferometer  can  be  implemented  with  only two test  particles. It is  easy to see, however, that 

y2,(t) is not  the  only  data  set  that allows us to remove the frequency  fluctuations of the lasers. In  Paper 1 

we have  shown that, among  the  noise  sources C,, Cb, Bo, Bb, only  one of them  can  be removed at  any time 

t by properly  combining  the  four data sets.  This result follows from  the  fact that  the two-way responses  can 

be  written as linear  combinations of the two one-way responses  in the following way 

Eqs. (8, 9) imply that we can  regard the one-way data as primary data  sets, since  they  contain  all  the 

information  about  the  gravitational wave signal  and  the noise  sources Ca(t), C b ( t ) ,  B , ( t ) ,  &(t).  Furthermore, 

by comparing  the two-way data against  the synthesized two-way data given by Eqs. (8, 9) ,  we can assess the 

overall  performance of the  transponders  and  the  photo  detectors.  In  other words we can  take  advantage of 

the data redundancy by validating  the  quality of the two-way data. 

Since the  fluctuations  due  to  the  lasers  are  the  dominant noise sources  in the  tracking responses,  and 

only  one of them can be removed at any time t [9], from  Eqs. (8, 9) it follows that there  are only two linear 
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combinations of the two one-way data  that  do not  contain  one of the  random processes C,,(t), Cb( t ) .  In  the 

Fourier domain they have the following form 

It is easy to verify that  the transfer  functions of the noises Ca, c b  in Eqs.  (10, 11) are  null a t  frequencies 

that are  multiple  integers of the inverse of the round-trip-light time  2L.  The two-way data given by Eqs. 

(10,  11) are  not  the  only two linear  combinations of the one-way data whose lasers'  transfer  functions have 

nulls. This  property  is also fulfilled by the following two linear  combinations of the two one-way data sets 

where we have included  a  factor 1/2 in order to normalize to  one the  maximum of the  antenna  pattern of the 

gravitational wave signal (see Eqs.  (16, 17) below). The two linear  combinations y+(t), y- ( t )  are  invariant 

(modulo  a  sign  change)  under  permutation of the  spacecraft indices a ,  b ,  and knowledge of the  distance L 

between the spacecraft is not  required in order to  construct  them,  contrary  to  what  happens  with z ( t )  and 

Y(t). 

If we take  into account Eqs. (3, 4) ,  the Fourier transforms of Eqs.  (12,  13)  assume the following forms 
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, -  ” I 

where we have denoted with Ht(p, f ) ,  H -  ( p ,  f )  the following antenna  patterns of the responses Z(f) , 
y?: ( f )  respectively 

Note that  the transfer  functions of the noises due  to  the lasers are  null a t  frequencies that  are even and  odd 

multiple  integers of the inverse of the round-trip-light-time 2 L  respectively 

2k 
f+(k)  E - z fo 2k 

2L 

2 k -  1 
2L 

f “ k )  Z - - z f o ( 2 k - 1 )  ; k = l , 2 , 3  , . . . . ,  

where fo is equal to  the inverse of the round-trip-light time. If we define Af to  be  the frequency  resolution 

of our data  set (equal  to  the inverse of the  integration  time T ) ]  to first  order in (Af L )  and  at  the frequencies 

ft (k), f- ( k ) ,  the responses g(f+), g(f-) can  be  approximated by the following expressions [9, 141 

If  we consider two spacecraft  separated by a distance L = 5 X lo6 km on the  same  circular heliocentric orbit, 

and  assume an  integration  time 7 of three months as a numerical  example, we find that  the amplitudes of 

the frequency fluctuations  due  to  the lasers are reduced at  the xylophone  frequencies by a factor of 

7r Af  L 
” 

C 
- 6.5 x . 
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Eqs. (19, 20) show some  interesting,  and  somewhat  peculiar,  properties of the  remaining  gravitational wave 

signals at  the xylophone frequencies. The response to a gravitational wave pulse goes to zero not only when 

the wave propagates  along  the  line of site between the  spacecraft ( p  = kl), but also  for  directions  orthogonal 

to  it ( p  = 0). This  is consequence of the  fact  that for p = 0 the Doppler responses y+, y- to a gravitational 

wave become two-pulses, identical  to the responses of the laser noises, and therefore they cancel out at the 

xylophone frequencies. 

For sources randomly  distributed  in  the sky, as in  the case of a stochastic  background of gravitational 

waves, we can  assume  the angles (B ,r$)  to  be  random variables  uniformly distributed over the sphere. Since 

the average over (e, 4) of the responses given in Eqs. (14,  15) are  equal  to zero, we find that their variances 

(denoted  with Z:(f), (f)) are equal to 

At  the xylophone frequencies f- , f+ ,  the  functions E?, E:, are  equal  to  the following monotonically in- 

creasing  functions of the integer k 

1 1 
6 7r2(2k - 1)' 

Z2_(k) = - - ; k = l , 2 , 3  , . . . .  

I11 Estimated  Sensitivities 

In  order  to  take  advantage of the xylophone technique it is necessary to  integrate over a sufficiently long 

period of time.  This is because we want to reduce the noise due  to  the lasers to a level as close as possible 

to  that identified by the  remaining noise sources at  the xylophone  frequencies (see Eqs. (19, 20)).  Since the 

xylophone frequencies  change  in  time as the  distance between the  spacecraft varies, we can  not coherently 

integrate our data indefinitely. Coherent  integration  can  be  performed  only  on  a  time  scale T during which 
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the  variations of the xylophone frequencies are  smaller than  the frequency resolution A f = l/r. 
As an  example of a  xylophone  interferometer  detector of gravitational waves, let us consider two spacecraft 

separated by an average  distance of 5.0 x lo6 km on the  same heliocentric orbit.  This  orbital configuration 

can  be achieved by launching two spacecraft  with  a rocket capable of injecting them  into  the  same  Earth 

escape trajectory.  Subsequently the two probes will drift away from the  Earth,  and will start reducing  their 

speeds, using their own propulsion  systems, at  predetermined moments.  This  maneuver will take  them  into 

their final orbit,  in which they will  follow the  Earth  around  the  Sun  in  the  plane of the ecliptic. We point 

out  that  this sequence of maneuvers is a  subset of a  more  complicated  sequence  needed  for  positioning the 

LISA interferometer  in its final  operational  configuration [3], and  it is therefore  expected to  be realizable. 

LISA  will have its  three spacecraft  flying in a  circular orbit inclined 60' with  respect to  the plane of the 

ecliptic, and following the  Earth  approximately 20' behind it as seen from  the  Sun. 

In order to  identify  the  maximum  time of coherent  integration  for our xylophone  interferometer  detector, 

we need to derive the distance L( t )  between the spacecraft as a  function of time. L ( t )  can  be  obtained  from 

the  coordinates of the two  spacecraft  relative to a  coordinate  system centered on  the Sun.  These  can be 

written  in  the following parametric  form [15] 

T 

where t = 0 has  been chosen to coincide with  the  instant when spacecraft a is at perihelion. In  Eq. (26) T 

is the period of the  orbit (one year), [ is the  parameter describing the trajectory, (Y is the semi-major  axis of 

the ellipse, e = 0.017 is the eccentricity of the  trajectory  (equal  to  the eccentricity of the  Earth's  trajectory), 

and c = 1.9' is the value of the  parameter E corresponding to a separation of 5.0 x lo6 km between the 

two spacecraft at t = 0. From Eq. (26) it is easy to derive the following parametric  equation of the distance 

L ( [ )  between the  probes 
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As a consequence of the  magnitude of the  geometrical quantities e ,  L(O), E ,  and Q entering  into Eq. (27), 

we can  rewrite L(5)  in  the following approximated  form 

From the definition of the frequencies f-, f+ ,  we can  derive the relationship  between  the  variation of the 

xylophone  frequencies, 6 f- , 6  f+ ,  and  the relative  change  in the  distance between the spacecraft, SL(<)/L(O). 

Since,  for  instance, S f -  is  related  to SL(<) by the following equation 

by requiring it  to  be smaller than  the frequency resolution A f = 1 / ~ ,  we obtain  from  Eqs. (26,  28,  29) the 

following inequality 

where €0 corresponds to t = T in  Eq. (26). Eq. (30) can  be solved numerically in  terms of the parameter 

€ 0 ,  for a given choice of the integer k .  If  we assume k = 1, that is to say we consider the variation of the 

fundamental frequency fo = 3 x Hz, we find that we can  integrate coherently our data  for as long as 21 

days. If  we require  instead all the xylophone frequencies to change by less than  the frequency  resolution, we 

need to  calculate  the  maximum  integration  time for the value of k corresponding to  the largest xylophone 

frequency we want to include in our observable frequency band.  With k = 25, which implies f- (k = 25) = 1.5 

Hz, we find a corresponding  maximum  integration time of 5.5 days. 

Let us turn now to  the  trajectory of the spacecraft in  the LISA mission. It has been  calculated by Folkner 

et al. [16] that  the relative  longitudinal  speeds between the  three  pairs of spacecraft,  during  approximately 

the first year of the mission,  can  be  written in the following approximated  form 

where we have denoted w i t h  ( 1 , 2 ) ,   ( 1 , 3 ) ,  ( 2 , 3 )  the  three possible spacecraft  pairs, Y , j  are  constant velocities, ( 0 )  
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and x, ,  are  the  periods for the  pairs ( i , j ) .  In  reference [I61 it  has also been shown that  the LISA trajectory 

can  be selected in  such  a way that two of the three arms’  rates of change are essentially  equal  during the 

first year of the mission. This configuration is particularly  attractive because it implies an almost  null 

variation in differential  armlength for one of the  three interferometers. Following reference [16], we will 

assume Vi,:) = V,’,”,’ # Vz’p3’, with VJ,:) = 1 m/s, VJ,:) = 13 m/s,  TI,^ = T1,3 M 4 months,  and T2,3 M 1 

year. With these numerical values we can  calculate  the  maximum  integration  times for different xylophone 

frequencies. The calculation is similar  to  the one we have performed in our example-trajectory  above,  and 

therefore we will not go  through  it here. The results of this analysis, however, indicate that  the  data from  the 

two pairs of spacecraft, (1 ,2) ,  (1 ,3) ,  can  be  integrated  coherently at  the frequency f o  = 3 x loq2 Hz for about 

10 days. A shorter  integration  time of about 3 days is needed instead to make  xylophone  measurements at 

the frequency 1.5 Hz. For the remaining  pair of spacecraft,  due  to  their  larger  relative  speed, we have found 

that coherent integration  at fo can  be  performed for about 6 days, while at 1.5 Hz the  maximum  integration 

time goes down to  about 2 days. 

The numerical values of the  maximum  integration  times derived above allow us to  estimate,  at  the 

xylophone  frequencies, the one-sided power spectral  densities of the noises affecting the two data sets y-, 

y+. In  what follows we will consider two spacecraft  with  identical  optical and mechanical  payloads, and we 

will assume  them  to be  equal to those that will  fly onboard  the LISA spacecraft [3]. We will also  assume the 

random processes associated  with the noise sources affecting the  stability of the coherent one-way tracking 

data  to be  uncorrelated  with each others,  and their one-sided power spectral densities to  be consistent  with 

those given in reference [3]. Since our  xylophone will be  sensitive to  gravitational  radiation at frequencies 

equal to or larger than  the inverse of the  round-trip-light-time  (c/2L = 3 x lo-’ Hz), the  dominant noise 

sources determining  its  strain sensitivity will be the  photon-shot noises, and  the frequency  fluctuations of 

the lasers [3]. 

After  taking  into account  Eqs. (14, 15), and  the expressions of the one-sided power spectral  densities  for 

the shot-noise and  the frequency fluctuations of the laser given in reference [3], the one-sided power spectral 

densities Sy- ( f ) ,  S,, ( f )  of the noises in the responses y-,  y+ respectively, estimated  in  the frequency band 

of the xylophone,  can be  written as follows 

Sy- ( f )  = f 2  + f -2 /3  + 6.3  X f-3,4] cos2 ( g )  2 f o  ’ 
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S,, ( f )  = IOw3’ f 2  + [ f - ’ I 3  + 6.3 x f-3.4] sin2 (X) (33) 

In  Figure 3 (i, ii) we have plotted these two functions by assuming  an  integration  time of 5.5 days.  Note 

that, with  such an  integration  time,  the one-sided power spectral  density of the laser noises are reduced, 

at the xylophone  frequencies, by a  factor of ( rAf L)’ = 1.2 x lo-’. Since the  functions Sy- ( f ) ,  Sy+(f) 

plotted in Figure 3 are  monotonically  decreasing at  the xylophone  frequencies, we conclude that with  such 

an  integration  time  the noise due  to  the lasers is still  the  dominant one. 

The 5.5 days  time  interval corresponds to a  pair of spacecraft separated by a  distance of 5 X lo6 km  in  the 

Earth’s heliocentric orbit,  and implies  a  variation of the  largest of the xylophone  frequencies  smaller than  the 

frequency resolution  bin. At smaller  xylophone frequencies, however, the one-sided power spectral  densities 

should be rescaled according to  the  appropriate  maximum  integration  times. For instance,  since at the 

frequency 3 x Hz we can  coherently integrate  the  data  from these  spacecraft  for 21 days,  the one-sided 

power spectral  density a t  this frequency would be  smaller than  the value  shown  in  Figure 3 (i) by a  factor 

(5.5/21)’. Similar  considerations  apply to  the  data  from  pairs of spacecraft in  the LISA interferometer. 

We should  remember  this  point when we will estimate  the signal-to-noise ratios for  various  gravitational 

waveforms. 

Gravitational waves can  be classified into  three categories,  depending on  their  temporal behavior and 

time  duration  relative  to  the  time of observation of a  detector. A complete review of gravitational wave 

sources, and  estimates of the corresponding strengths of interest in  the frequency band of our xylophone, 

are given in reference [I]. 

Gravitational wave bursts  in  the  millihertz frequency band could be  emitted  during different astrophysical 

scenarios. A collapse of a star cluster to  form a  supermassive black hole, for instance,  might  generate a 

waveform whose dominant  spectral  components coincide with  the frequencies at which the effects of the 

frequency fluctuations  due  to  the lasers are suppressed. 

Another  astrophysical  scenario  implying the emission of a gravitational wave burst is the fall of small 

black holes into a  super massive black hole, as it  might  happen at  the end of the merger of two galaxies each 

hosting  a black hole at their  centers.  Although the  temporal dependence of the  gravitational wave burst 

radiated  during  the merger is unknown, the  radiation  emitted by the newly formed hole during  the  settling 

process can be described  mathematically  quite well [17,18]. The  radiation  in  this case is strongly  dominated 
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by the black-hole quasi-normal  modes, whose frequencies and  damping  times  depend  on  the  mass of the hole 

and  its  angular  momentum.  The strongest and most slowly damped of these  modes is expected to  be  the 

fundamental, whose gravitational wave tensor  can  be  written as follows [18] 

where eij is the  polarization  tensor, ho is the wave's amplitude  at  its  time of arrival t , ,  and f, and TO are  the 

quasi-normal  mode's frequency and  damping  time respectively. The  analytic expressions  for the  amplitude 

ho, the frequency f, of the  damped  mode,  and  the  damping  time TO are as follows [17, 181 

c3 

f s  = 2.rrMG [l - 0.63  (1 - 

Here r is the physical  distance  to the black-hole, A E  is the energy radiated  in  the  form of gravitational waves 

over the  time scale l/f,, a is the dimensionless rotation  parameter,  and M is the  mass of the black-hole. 

When  a  approaches 1 we have a relativistically rotating black-hole, while a = 0 corresponds  to  the  radiation 

from  a  perturbed Schwarzschild hole [18]. Note that, in  order  for the  signal  to  perform one  oscillation 

before getting  damped,  the black-hole must rotate  with  an  angular  momentum a as large as 0.633 (the 

right-hand-side of Eq. (37) must  be equal to n in  order to have TO = l/fs). 

It is well known that, when searching for bursts,  the largest  signal-to-noise ratio  is achieved by applying 

matched  filtering to  the  data [19]. The signal-to-noise  ratios SNR- ( f,, a) ,  SNR+( f,, a) ,  after  matched 

filtering is applied to  the Doppler data y- , y+, are given respectively by the following formulas [19] 
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where we have denoted  with A ,  B the following two  functions of f s  and  a 

(1  - a)9/10 
16 

If  we assume  the energy A E  emitted  in  the  form of gravitational  radiation to  be  proportional  to  the 

rest energy of the black-hole (AE = EMc') ,  by substituting  Eq. (36) into  Eq. (35) it is  easy to  derive the 

following expression for the wave's amplitude ho 

c { [l - 0.63 (1 - 
E 

ho = - 
nrfs 2A 

Eq.(42) implies that, for a fixed angular  momentum  a,  fractional  radiated energy 6 ,  and source  distance r, 

the  amplitude of the 'wave is inversely proportional  to  the center  frequency, f s .  This is  because the mass 

of the  system  is inversely proportional to fs (Eq.(36)). For example, at  the frequency f s  = 3.0 x lo-', the 

corresponding mass of the Schwarzschild black hole is about 4 x lo5 MQ. 

Owing to  the  spectral  modulations,  the signal-to-noise  ratios of the  filter  matched  to  this  signal will vary 

with  center  frequency, f s .  In  Figure  4  (i,  ii) we plot  the signal-to-noise ratios for y-, and y+ versus f s  for 

non-rotating (a = 0) and  highly-rotating (a = 0.99) waveforms, and for  sources randomly  distributed over 

the sky. Similar  calculations  can be performed for a particular  direction of propagation of the signal. We 

should  remember, however, that  the averaged values  of the  antenna  power-patterns  are  about  a  factor of two 

smaller than  their respective maxima (see Eqs.  (22, 23)). 

An integration  time of 5.5 days was assumed for calculating  the  signal-to-noise  ratios  plotted  in  Figure 

4. This clearly underestimates  the noise spectral levels at xylophone  frequencies smaller  than 1.5 Hz. For 

instance,  since at  the frequency of 3 x Hz  we can  integrate for 21 days,  and  the signal-to-noise  ratios 

are  approximately inversely proportional  to  the value of the one-sided  power spectral  density of the noise 

at  this frequencies, we conclude that  the SNRs should be rescaled at  this  frequency by roughly  a  factor of 

(21/5.5)' with  respect to the value  given in  Figure 4 (i). Note  also that  the SNRs in  Figure 4 have been 

normalized to the percentage of energy radiated E and  the physical distance r measured  in  units of 1 Mpc; 

the  explicit  dependence of the SNRs on these two parameters is proportional  to E',-'. 
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As an example  application of Figure 4,  consider gravitational  radiation  from  quasi-normal  mode  pertur- 

bations of a black hole out to the Virgo cluster of galaxies ( X  20 Mpc). For a  rapidly-rotating (a = 0.99) 

9 X 105Mo black hole, the corresponding radiation frequency f s  is equal to 3 x lo-’ Hz. To achieve a  matched 

filter SNR of 10, the  quasi-normal  mode  vibrations of the black hole require an efficiency 6 M 4 X lo-’. 

Let us now turn  to  the two remaining classes of gravitational waveforms, namely  sinusoids and stochastic 

backgrounds of gravitational  radiation.  In  the case of the  stochastic  background  with  bandwidth equal to 

center  frequency, the sensitivities at  the frequencies f - ,   f + ,  are given by the expected  root-mean-squared 

(r.m.s.) noise levels a_,   a+,  of the frequency fluctuations  in  the bins of width f - ,   f +  respectively. These 

are  equal  to 

k = 1 , 2 , 3  , . . . . .  (44) 

When searching  for  a  stochastic  background of gravitational  radiation,  the  best  sensitivity  is achieved 

at  the lowest xylophone frequency. At f- ( 1 )  = 3 x lo-’ Hz  we get an energy  density  per  unit  logarithmic 

frequency and per unit critical energy density !2 [l] equal to 1.4 X after  taking  into account the effect 

of the  r.m.s.  antenna  pattern C l  ( k  = 1) given in  Eq. (25), and rescaling the value of S,- ( f -  (1))  given in 

Figure 3 (i)  to  an  integration  time of 21 days. 

Finally,  sources of sinusoidal  gravitational waves in  the millihertz  frequency band  are expected to  be 

inspiraling  binary  systems. As such  a  system evolves, the frequency of the  emitted  radiation slowly increases 

due  to  gravitational  radiation  reaction. If the  source radiates near  one of the frequencies f - ,   f + ,  and  is 

sufficiently far  from coalescence, then  it will radiate  predominantly as a  sinusoid.  In the millihertz band we 

can  describe  mathematically  the  radiation  they  emit  quite  accurately  in  the  Newtonian  approximation.  In 

this  framework,  the  maximum  amplitude  radiated by the  system  and  the  time  it  spends  around  the frequency 

f are given by the following expressions 
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where r is the physical  distance  to the  binary  system, G is the  gravitational  constant, c is the speed of light, 

q is the  characteristic  time  during which the  binary  system  radiates at  the frequency f ( t ) ,  and p and M are 

the reduced and  total  mass of the  system. In order  for the signal’s  frequency not  to change by more  than 

the frequency resolution A f of the  data,  the following condition  must  be satisfied 

1 
f T < - .  

7 
(47) 

If we divide both sides of Eq. (47) by one of the frequencies f - ( k ) ,  for  instance, we obtain  the following 

relationship  between  the  time, q k ,  spent by the signal’s frequency around  the frequency f - ( k ) ,  and  the 

integration  time T 

Note that,  the smaller  the frequency at which we will perform  our  observation, the easier will be  to have 

binary  systems  radiating sinusoidally  during the  integration  time T .  

If,  for  instance, we assume f = 3 x lo-’ Hz, from  Eqs. (46,  48) we derive that a binary  system of two 

1.4Mo neutron  stars could be searched for by integrating  the  data for about 8 days before the frequency of 

the signal would change by more than  the frequency  bin. Since the  sensitivities to sinusoids, u-, u+, at  the 

xylophone  frequencies f- , f+,  can be written respectively in  the following forms 

we find that  at 3 x Hz the  r.m.s. noise level is equal  to 1.9 x lo-”. With such  a  strain sensitivity,  a 

binary  system  such as the one considered could be observed out  to  a  distance of 19.5 kpc. 

As a final note, we point  out  that  an  integration  time of 8 days would allow also  coherent  integration 

of the  data from two of the three  pairs of spacecraft  forming the LISA interferometer. Data from  the  third 

pair, however, could be  integrated  coherently only for 6 days, implying  a  distance of about 12.3 kpc at which 

such a  binary  systems could be observed. 
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IV Conclusions 

We have discussed an  experimental  t  chnique for performing searches of gravitational  radiation  in space  with 

two spacecraft  tracking each other 9 via  coherent  laser  light. The  main result of our analysis,  deduced  in  Eqs. 

(19,  20), shows that we can  reduce, by several orders of magnitudes,  the frequency  fluctuations  introduced  in 

the  data by the lasers. This is achieved through  the two linear  combinations of the two one-way data given 

in  Eqs. (12,  13))) and by making  measurements at selected Fourier components.  In  this respect  spacecraft 

to  spacecraft coherent  laser  tracking  can be regarded as a xylophone  interferometer detector of gravitational 

radiation. 

Signal-to-noise  ratios for various gravitational waveforms have been estimated  in Section 111. In  particular, 

when searching for sinusoids, we have found that a strain sensitivity of 1.9 x at  the frequency 3 X lo-’ 

Hz can  be achieved after  coherently  integrating the  data for 21 days.  At  this  sensitivity level, gravitational 

radiation  from  galactic coalescing binary  systems  should  be observable. 

Spacecraft to spacecraft  xylophone  interferometric  measurements of gravitational  radiation could be 

implemented  with two spacecraft  carrying an  appropriate  optical  payload, or with the proposed  broad-band, 

space-based laser  interferometer  detectors of gravitational waves. 
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Figure Captions 
Figure 1. 

Coherent  laser  light of nominal frequency Y O  is transmitted  from spacecraft a to  spacecraft b ,  and coherently 

transponded  back. The gravitational wave train  propagates along the 2 direction,  and  the cosine of the 

angle between its direction of propagation  and  the  laser  beam is denoted by p .  An equivalent link from 
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spacecraft b to spacecraft a is established.  Together  with two-way data, measurements of one-way coherent 

laser  tracking  can  also  be  done by comparing at  a photo  detector  the  phase of the received signal  with  the 

phase of the local  laser. See text for a  complete  description. 

Figure 2. 

Block diagram of the  optical payload  onboard  spacecraft a, that allows the  acquisition  and recording of the 

two tracking data yla( t ) ,  ~ ? ~ ( t ) .  An identical  configuration is implemented  on  board spacecraft b .  Two 

lasers are needed in order  to implement  the four-link system.  One of the two  laser, referenced in  the figure as 

Master  laser,  acts as primary frequency reference. The Slave  laser instead  is coherently locked to  the phase 

of the incoming  signal, and  transmits back to  the other  spacecraft. 

Figure 3. 

The one-sided power spectral  densities (i) S,- ( f ) ,  (ii) S,, ( f  of the noises entering the responses y- , y+ 

respectively. In  order  to  calculate  the  minima,  an  integration  time of 5.5 days  has been  assumed. See text 

for  explanation. 

Figure 4. 

Signal-to-noise ratios  to  quasi-normal  mode  gravitational waves from sources randomly  distributed over the 

sky, as a function of the normal  mode frequency f s  and  the  angular  momentum  parameter a. Two values for 

the  angular  momentum, a = 0 (solid)  and  a = 0.99 (dashed)  lines,  are  shown.  (i) SNR- is the signal-to-noise 

ratio after  matched  filters  are  applied to the  data y-(t) ,  while (ii) shows the signal-to-noise ratio SNR+ 

after  matched  filters  are  applied  to  the data y+(t) .  
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